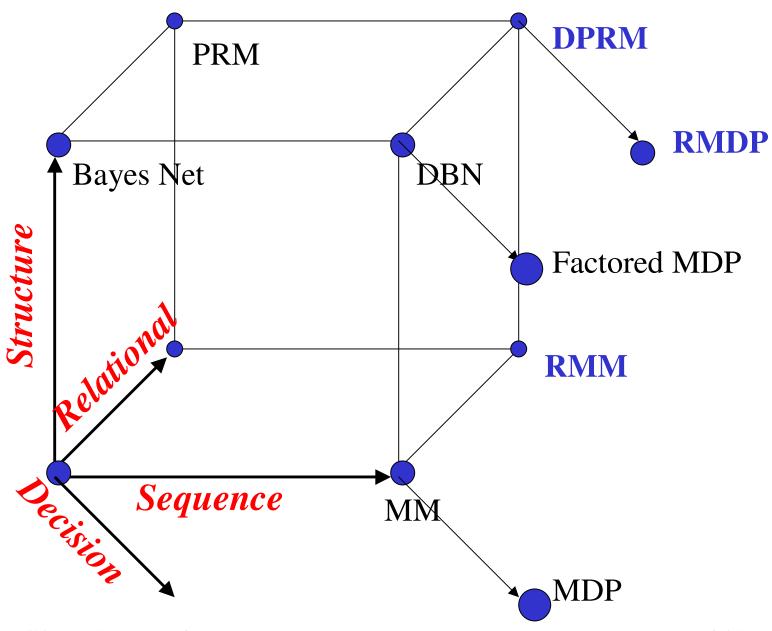
Motivation

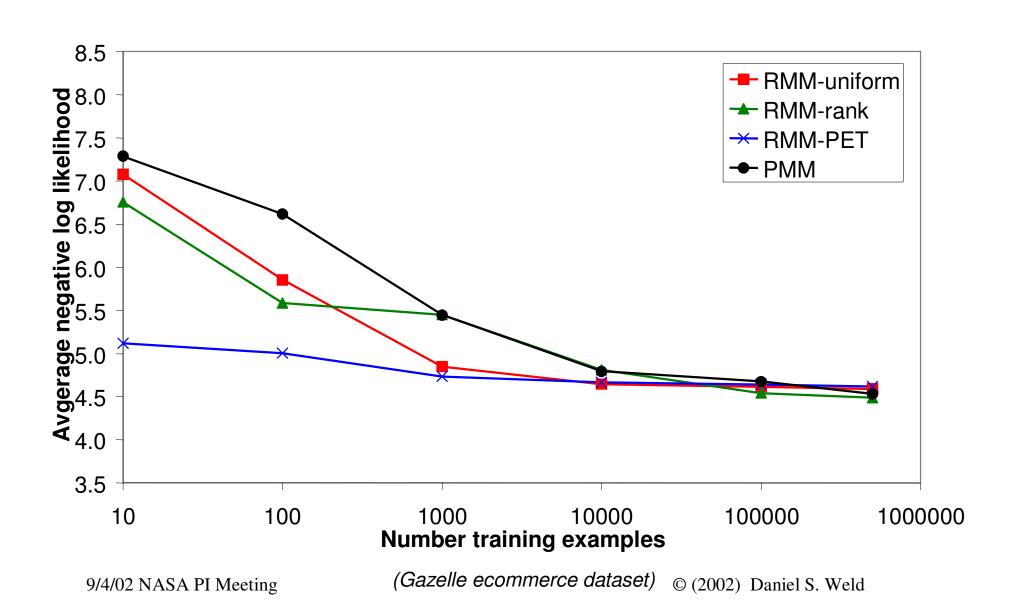
- Models for Uncertain Sequential Data
 - Markov Models
 - Dynamic Bayes Nets (DBNs)
 - (Factored) Markov Decision Processes (MDPs)
- Powerful + Ubiquitous, but Lacking
 - Static set of state variables & relationships
 - Propositional no notion of object & relations
 - No quantification
- Spurred by Recent Advances (e.g. OOBNs, PRMs)...
 - Combining ideas from FOL and Probabilistic Graphical Models
 - ⇒ Relational Markov Models
 - ⇒ Dynamic PRMs
 - ⇒ Relational MDPs



Relational Markov Models

- In ordinary MM, each state is trained independently
 - Abundant training data for one state cannot improve prediction at another state
 - Large state models require vast training data
- Relational MMs exploit relational structure in domain
 - Given abstraction hierarchy over each data type...
 - Structure enables state generalization...
 - Combats data sparseness with shrinkage
 - **Weighting when abstractions are more specific**
 - **Weighting when training data is abundant**
- Learned RMMs outperform PMMs

Learning RMMs vs. Propositional MMs



Dynamic PRMs

- Aka Relational DBNs
- Dynamic object creation
- Learning
 - Modified version of PRM learner
- Inference
 - Modified version of particle filters

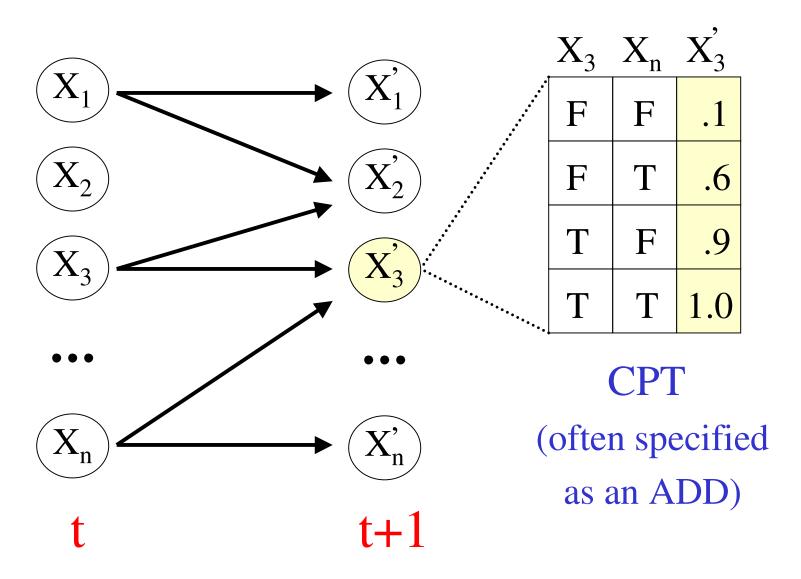
RMDP Objectives

- Define different classes of objects
- Possible relations between objects
- Action schemata
- Semantics in terms of a ground MDP
- Benefits
 - Convenient specification of complex domains
 - Exploit structure for faster policy construction
 - Handle domains w/ dynamic relations, object creation / destruction

Review: Factored MDP

- Space of states: S
 - Characterized by variables $X = \{X_1, ..., X_n\}$
- Set of actions: A
 - Each specified using a DBN
- Transition function: $P(s' \mid s, a) \rightarrow [0, 1]$
- Reward function: $R(s, a) \rightarrow \mathcal{R}$
- Objective: compute a policy $\pi: S \to A$
 - Maximizing discounted reward

Review: DBN Spec. of an Action



Relational MDPs

- Specify classes of objects and possible relations
- States characterized by relational interpretations
 - Instead of a set of propositions: $X = \{X_1, ..., X_n\}$
- Actions are schematized
 - May change the set of objects, relations between them
 - E.g. a manufacturing mill which produces new objects
 - Or a robot's motion which discovers new objects

Improved Value & Policy Iteration

- Use relational structure to aggregate states
 - Factor state space via homeomorphisms
 - Conditional irrelevance of wffs
 - Augmented operator-graph analysis
- Update multiple states with each Bellman backup

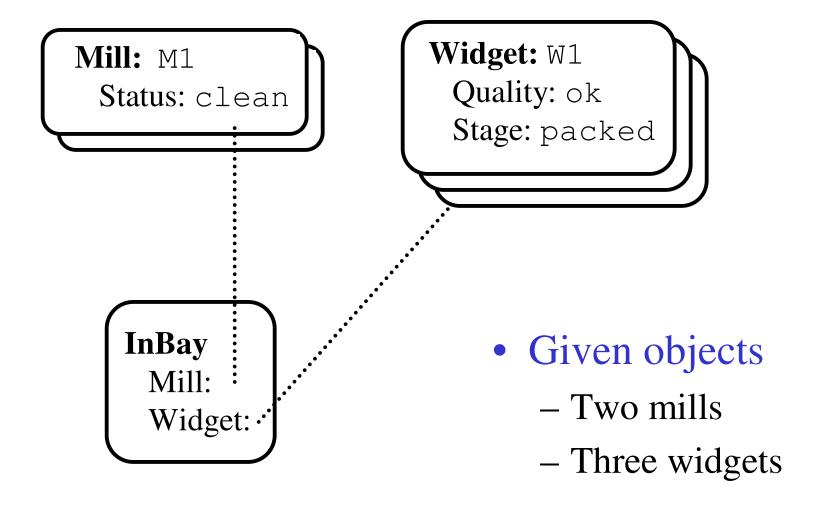
$$V(s) = Max [R(s, a) + \gamma \sum_{s'} P(s' | s, a) V(s')]$$

Dynamic Object Creation...

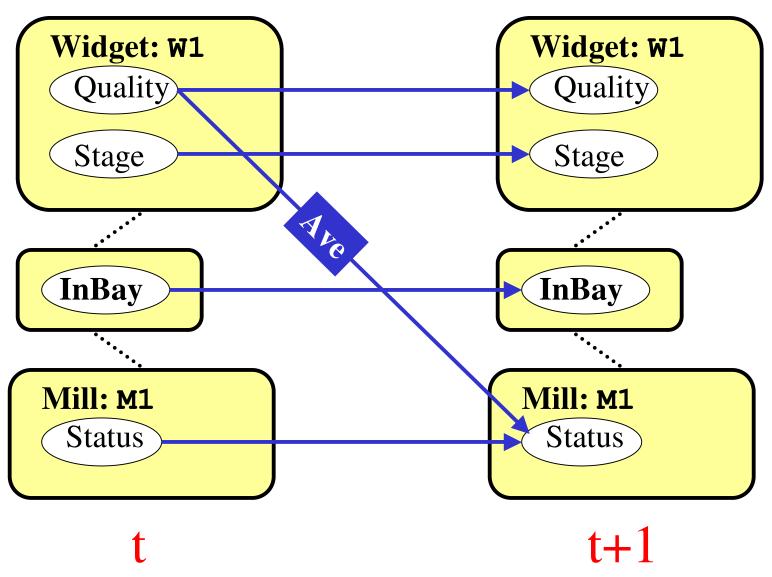
Simple RMDP Example

- Two Types of Objects w/ Boolean Attributes
 - Mill (status) e.g., dirty / clean
 - Widget (quality, stage)
 e.g., defective / ok; ready / packed
- One Type of Relation Possible
 - InBay(mill, widget)
- Three Actions
 - Process(M) Create a new widget (maybe defective)
 - Pack(W) Pack (good) widget, clearing mill bay
 - Recycle(W) Clear mill bay
- Large State Space
 - Suppose m mills, w widgets \Rightarrow $2^{(m+2w+mw)}$ states
 - E.g., 4 mills, 10 widgets \Rightarrow 10¹⁹ states

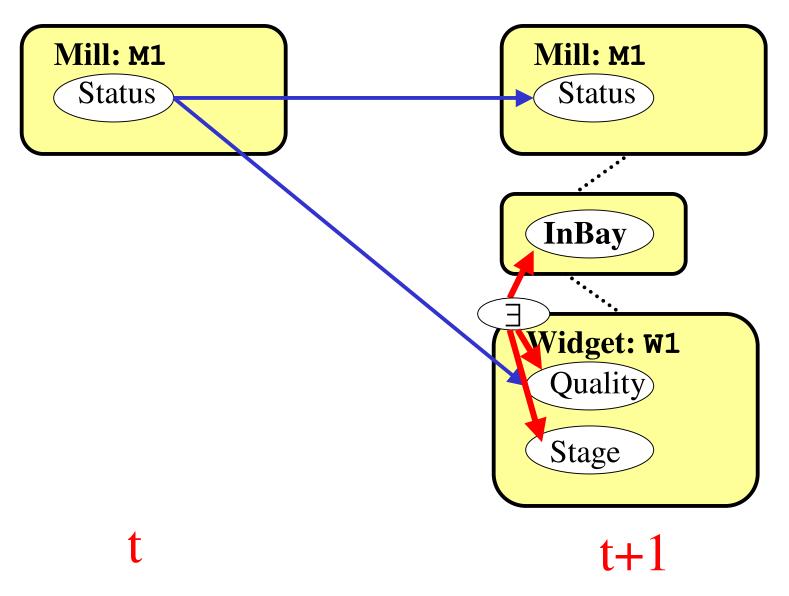
Example: Relational Skeleton



Example Action: Pack(W)



Example Action: Process(M)



Related Work

- PRMs [Friedman et al.]
- Factorial HMMs [Ghahramani & Jordan]
- OOBNs [Pfeffer et al.]
- Use of hierarchy in reinforcement learning
- *Etc.*

Conclusion

- RMDPs allow easier modeling of complex domains
- Exploit structure for faster policy construction
- Dynamic relations, object creation / destruction

Planning and Execution Under Uncertainty

Daniel S. Weld, University of Washington

Objectives & Innovations

- Combine ideas from MDPs & relational logic
 - Convenience & expressiveness
 - Exploit structure to speed policy construction
 - Dynamic objects / relations
- •Formalize unified agent architecture
 - •Define interleaved planning & execution ...
 - ... as lazy evaluation of contingent planning

NASA Relevance

- •Uncertainty is ubiquitous in rover context → MDPs
- •Efficient processing crucial given processor constraints
- •Ability to handle novel objects, changing relations

Relational Markov Decision Processes

- Specify classes of objects and possible relations
- States characterized by relational interpretations
 - Instead of a set of propositions
- Actions are schematized
 - May change the set of objects
 - May change the relations between objects

Accomplishments

- •Grant Initiation [Feb 02]
- •Paper on Relational Markov Models [KDD 02]
- •Definition: Relational MDP [July 02]

Milestones [one year grant]

- •Paper on RMDPs [Oct 02]
- •Experiments on new objects [Jan 03][

Example Action: Process(M)

